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• Introduction
- Fluid-Structure Interactions

•Aeroelasticity
- Aeroelastic analysis/design in an MDA/MDO Environment

• Static Aeroelasticity

• Dynamic Aeroelasticity

• Commercial Programs with Aeroelastic Analysis/Design
Capabilities

Presentation Outline
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Dynamic Aeroelastic Phenomena

• Dynamic Response

• Limit Cycle Oscillations (LCO)

• Buffet

• Flutter

 Dynamic Aeroelasticity

Solutions found in time, frequency, and Laplace domain usually
with generalized coordinates
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Dynamic Response

Transient response due to a rapidly applied load.

• Atmospheric Turbulence
- Continuous random
- Discrete random (gust)

• Landing loads

• “Snap” maneuvers

• Store Separation
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Limit Cycle Oscillations

Typically caused by shock induced oscillations on a surface or flow/
shocks attaching/detaching from a surface trailing edge.

• Panel Flutter

• Control Surface “Buzz”

• Store/Wing configurations

Reduces structural life

Usually requires nonlinear flow conditions and possibly nonlinear
structures (cs hinge stiffness)
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Buffet

Response due to time-dependentseparated flows (usually vortical)
impinging on structural surfaces.

• Bluffed bodies on horizontal and vertical surfaces

• Wings, strakes etc..  on vertical tails (often a twin tail prob-
lem)

Reduces structural life

Requires nonlinear aerodynamics to capture phenomena
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Flutter

Dynamic instability where-by the system extracts energy from the
free stream flow producing a divergent response.

• Usually resultant of coupling of 2 or more structural modes
- Wing bending and torsion
- Wing bending control surface hinge torsion
- Wing torsion fuselage bending
- Horizontal or vertical tail and fuselage

Divergent behavior can occur within a few cycles and be cata-
strophic

Theodore Von Karman is said to have remarked that

“some men fear flutter because they do not understand it, while
others fear it because they do”[8]
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P-K Method Comments

• Matrices are real but non-symmetric yielding complex roots.

• Flutter equation only “true” when , an estimate elsewhere

• Mode switching often occurs making results interpretation difficult

•  depends on Mach number and reduced frequency

• Solution requires  to be a continuous function of .

- Results in curve fitting  which can cause errors

• Above formulation does not allow

• User responsible for determining “match point solutions”

γ 0=

Qhh Qhh M k,( )

Qhh k

Qhh

k 0=

Dynamic Aeroelasticity
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AGARD 445.6 Flutter Calculations
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AGARD 445.6 Time Integration Response
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AGARD 445.6 Time Response Integration
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AGARD 445.6 P-K Flutter Solution
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AGARD 445.6 P-K Flutter Solution
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AGARD 445.6 P-K Flutter Solution
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Global Aeroelastic Software Developments
• MSC/NASTRAN (U.S.)

• UAI/ASTROS (recently bought by MSC) (U.S.)

• UAI/NASTRAN (U.S.)

• ELFINI (France, Dessault)

• LAGRANGE (Germany, formerly MBB)

• STARS (Great Britain, RAE)

• OPTSYS (Sweden, SAAB)

• COMPASS (China)

• ARGON (Russia, Central Aerohydrodynamic Institute)
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MSC/NASTRAN
• Steady Aerodynamics

- Subsonic
•Doublet Lattice (k=0)
•3-D panel Method (available in the near future)
•Bypass option for any AIC

- Supersonic
•ZONA51
•Bypass option for any AIC
•Aerodynamic database
•Import/export loads data

• Unsteady Aerodynamic
- Subsonic

•Doublet Lattice with body interference
•Strip Theory

- Supersonic
•Mach Box
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•Piston Theory
•ZONA51

• Structural Modeling
- Very rich selection of FE

• Static Aeroelastic Analysis
- 5 DOF trim (no drag/thrust trim)
- Flexible increment analysis
- Computes rigid, restrained and unrestrained flexible
- Able to add experimental load correction factors to A
- Divergence of restrained vehicle
- Slender body models
- Multiple set selectable aerodynamic models
- Aeroelastic database
- Import/export loads data

Aeroelastic Software
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• Dynamic Aeroelasticity
- Frequency response analysis
- Random analysis
- Transient analysis
- Gust (random and discrete 1-d)
- Flutter P-K, K, K-E (K-E allowsk=0)

-  curve fits cubic through all points

• F-S Interface
- Infinite plate spline
- Thin plate spline
- Finite plate spline
- Beam spline
- Rigid load Transfer

• Pre-Post Processing
- Extensive Flight Loads pre/post processing function

ronment

Q M k,( )

Aeroelastic Software
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UAI/ASTROS Aeroelastic Capa
• Steady Aerodynamics

- Subsonic
•USSAERO (Woodward Aerodynamics, flat panel)
•QUADPAN (Lockheed Martin, 3-D panel)
•Bypass option for any AIC
•Multiple set selectable aerodynamic models

- Supersonic
•USSAERO (flat panel)
•QUADPAN (3-D panel)
•Bypass option for any AIC

• Unsteady Aerodynamic
- Subsonic

•Doublet Lattice
- Supersonic

•Constant Pressure Method (Apa, Northrop)



Ko 25

D

Quadrilateral Plates,

rivatives
lonay

CR
• Structural Modeling
- Membrane type FEM (Rods, Beams, Shear panels, 

Composites)

• Static Aeroelastic Analysis
- Full 6 DOF Trim
- Computes rigid and four types of flexible stability de
- User defined loads
- Trim Optimization

• Dynamic Aeroelasticity
- Gust Response
- Flutter P-K (computes flutter velocity)

- Several choices for  curve fits

• F-S Interface
- Infinite Plate spline

Q M k,( )

Aeroelastic Software
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- 3-D surface spline
- Beam spline
- Rigid load Transfer

• Very easy to add user defined functionality a
tem

Aeroelastic Software
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